home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Mac Power 1997 December
/
MACPOWER-1997-12.ISO.7z
/
MACPOWER-1997-12.ISO
/
AMUG
/
PROGRAMMING
/
Raven 1.2.sit
/
Raven 1.2
/
• Extras •
/
SGI STL
/
hashtable.h
< prev
next >
Wrap
C/C++ Source or Header
|
1997-05-28
|
33KB
|
1,071 lines
/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* Exception Handling:
* Copyright (c) 1997
* Mark of the Unicorn, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Mark of the Unicorn makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* Adaptation:
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Moscow Center for SPARC Technology makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifndef __SGI_STL_HASHTABLE_H
#define __SGI_STL_HASHTABLE_H
// Hashtable class, used to implement the hashed associative containers
// hash_set, hash_map, hash_multiset, and hash_multimap.
#include <stdlib.h>
#include <stddef.h>
# ifndef __SGI_STL_ALGO_H
# include <algo.h>
# endif
# ifndef __SGI_STL_VECTOR_H
# include <vector.h>
# endif
# if defined ( __STL_USE_ABBREVS )
# define __hashtable_iterator _hT__It
# define __hashtable_const_iterator _hT__cIt
# define __hashtable_node _hT__N
# define __hashtable_base _hT__B
# define hashtable _h__T
# endif
__BEGIN_STL_NAMESPACE
template <class Key> struct hash { };
inline size_t __stl_hash_string(const char* s)
{
unsigned long h = 0;
for ( ; *s; ++s)
h = 5*h + *s;
return size_t(h);
}
struct hash<char*>
{
size_t operator()(const char* s) const { return __stl_hash_string(s); }
};
struct hash<const char*>
{
size_t operator()(const char* s) const { return __stl_hash_string(s); }
};
struct hash<char> {
size_t operator()(char x) const { return x; }
};
struct hash<unsigned char> {
size_t operator()(unsigned char x) const { return x; }
};
struct hash<signed char> {
size_t operator()(unsigned char x) const { return x; }
};
struct hash<short> {
size_t operator()(short x) const { return x; }
};
struct hash<unsigned short> {
size_t operator()(unsigned short x) const { return x; }
};
struct hash<int> {
size_t operator()(int x) const { return x; }
};
struct hash<unsigned int> {
size_t operator()(unsigned int x) const { return x; }
};
struct hash<long> {
size_t operator()(long x) const { return x; }
};
struct hash<unsigned long> {
size_t operator()(unsigned long x) const { return x; }
};
template <class Value>
struct __hashtable_node
{
typedef __hashtable_node<Value> self;
self* next;
Value val;
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey , __DFL_TYPE_PARAM(Alloc,alloc)>
class hashtable;
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator;
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_const_iterator;
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_iterator
# if defined ( __STL_DEBUG )
: public __safe_base
# endif
{
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hash_table;
typedef __hashtable_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc>
const_iterator;
typedef __hashtable_node<Value> node;
typedef size_t size_type;
typedef Value& reference;
typedef const Value& const_reference;
node* cur;
hash_table* ht;
# if defined ( __STL_DEBUG )
const node* get_iterator() const { return cur; }
const hash_table* owner() const { return (const hash_table*)__safe_base::owner(); }
__hashtable_iterator(node* n, hash_table* tab) :
__safe_base(tab), cur(n), ht(tab) {}
__hashtable_iterator() : __safe_base(0) {}
# else
__hashtable_iterator(node* n, hash_table* tab) : cur(n), ht(tab) {}
__hashtable_iterator() {}
# endif
reference operator*() const {
__stl_verbose_assert(valid() && cur!=0,__STL_MSG_NOT_DEREFERENCEABLE);
return cur->val;
}
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& it) const {
__stl_debug_check(__check_same_owner(*this,it));
return cur == it.cur;
}
bool operator!=(const iterator& it) const {
__stl_debug_check(__check_same_owner(*this,it));
return cur != it.cur;
}
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
struct __hashtable_const_iterator
# if defined ( __STL_DEBUG )
: public __safe_base
# endif
{
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hash_table;
typedef __hashtable_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc> iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn,
ExtractKey, EqualKey, Alloc> const_iterator;
typedef __hashtable_node<Value> node;
typedef size_t size_type;
typedef Value& reference;
typedef const Value& const_reference;
const node* cur;
const hash_table* ht;
# if defined ( __STL_DEBUG )
const hash_table* owner() const { return (const hash_table*)__safe_base::owner(); }
const node* get_iterator() const { return cur; }
__hashtable_const_iterator(const node* n, const hash_table* tab)
: __safe_base(tab), cur(n), ht(tab) {}
__hashtable_const_iterator() : __safe_base(0) {}
__hashtable_const_iterator(const iterator& it) : __safe_base(it), cur(it.cur), ht(it.ht) {}
# else
__hashtable_const_iterator(const node* n, const hash_table* tab)
: cur(n), ht(tab) {}
__hashtable_const_iterator() {}
__hashtable_const_iterator(const iterator& it) : cur(it.cur), ht(it.ht) {}
# endif
const_reference operator*() const {
__stl_verbose_assert(valid() && cur!=0,__STL_MSG_NOT_DEREFERENCEABLE);
return cur->val;
}
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& it) const {
__stl_debug_check(__check_same_owner(*this,it));
return cur == it.cur;
}
bool operator!=(const const_iterator& it) const {
__stl_debug_check(__check_same_owner(*this,it));
return cur != it.cur;
}
};
// Note: assumes long is at least 32 bits.
// fbp: try to avoid intances in every module
enum { __stl_num_primes = 28 };
#if ( __STL_STATIC_TEMPLATE_DATA > 0 )
# define __stl_prime_list __stl_prime<false>::list_
template <bool dummy>
struct __stl_prime {
public:
static const unsigned long list_[];
};
template <bool dummy>
const unsigned long __stl_prime<dummy>::list_[] =
# else
# if ( __STL_WEAK_ATTRIBUTE > 0 )
extern const unsigned long __stl_prime_list[__stl_num_primes] __attribute__((weak)) =
# else
// give up
static const unsigned long __stl_prime_list[__stl_num_primes] =
# endif /* __STL_WEAK_ATTRIBUTE */
#endif /* __STL_STATIC_TEMPLATE_DATA */
{
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
inline unsigned long __stl_next_prime(unsigned long n)
{
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound((const unsigned long*)__stl_prime_list, last, n);
return pos == last ? *(last - 1) : *pos;
}
template <class Value, class Alloc>
class __hashtable_base
# if defined ( __STL_DEBUG )
: public __safe_base
# endif
{
private:
typedef Value value_type;
typedef size_t size_type;
typedef __hashtable_node<Value> node;
typedef simple_alloc<node, Alloc> node_allocator;
public: // These are public to get around restriction on protected access
__vector__<node*, Alloc> buckets;
size_type num_elements;
protected:
void clear();
node* new_node(const value_type& obj)
{
node* n = node_allocator::allocate();
__TRY {
construct(&(n->val), obj);
}
# if defined (__STL_USE_EXCEPTIONS)
catch(...) {
node_allocator::deallocate(n);
throw;
}
# endif
n->next = 0;
return n;
}
void delete_node(node* n)
{
destroy(&(n->val));
node_allocator::deallocate(n);
}
void copy_from(const __hashtable_base<Value,Alloc>& ht);
public: // These are public to get around restriction on protected access
__hashtable_base() : num_elements(0) { }
// __hashtable_base(size_type n) : num_elements(0) {}
~__hashtable_base() { clear(); __stl_debug_do(invalidate()); }
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey,
class Alloc>
class hashtable : protected __hashtable_base<Value, Alloc>
{
typedef __hashtable_base<Value, Alloc> super;
typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> self;
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
hasher hash_funct() const { return hashfun; }
key_equal key_eq() const { return equals; }
private:
hasher hashfun;
key_equal equals;
ExtractKey get_key;
typedef __hashtable_node<Value> node;
typedef simple_alloc<node, Alloc> node_allocator;
public:
typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> iterator;
typedef __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,Alloc> const_iterator;
friend struct
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
friend struct
__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
public:
hashtable(size_type n,
const HashFcn& hf,
const EqualKey& eql,
const ExtractKey& ext)
: hashfun(hf), equals(eql), get_key(ext) {
__stl_debug_do(safe_init(this));
initialize_buckets(n);
}
hashtable(size_type n,
const HashFcn& hf,
const EqualKey& eql)
: hashfun(hf), equals(eql), get_key(ExtractKey()) {
__stl_debug_do(safe_init(this));
initialize_buckets(n);
}
hashtable(const self& ht)
: hashfun(ht.hashfun), equals(ht.equals), get_key(ht.get_key) {
__stl_debug_do(safe_init(this));
copy_from(ht);
}
self& operator= (const self& ht)
{
if (&ht != this) {
hashfun = ht.hashfun;
equals = ht.equals;
get_key = ht.get_key;
clear();
buckets.clear();
copy_from(ht);
}
return *this;
}
~hashtable() {}
size_type size() const { return num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
void swap(self& ht)
{
__STL_NAMESPACE::swap(hashfun, ht.hashfun);
__STL_NAMESPACE::swap(equals, ht.equals);
__STL_NAMESPACE::swap(get_key, ht.get_key);
buckets.swap(ht.buckets);
__STL_NAMESPACE::swap(num_elements, ht.num_elements);
__stl_debug_do(swap_owners(ht));
}
iterator begin()
{
for (size_type n = 0; n < buckets.size(); ++n)
if (buckets[n])
return iterator(buckets[n], this);
return end();
}
iterator end() { return iterator((node*)0, this); }
const_iterator begin() const
{
for (size_type n = 0; n < buckets.size(); ++n)
if (buckets[n])
return const_iterator(buckets[n], this);
return end();
}
const_iterator end() const { return const_iterator((node*)0, this); }
friend bool operator== (const self&,const self&);
public:
size_type bucket_count() const { return buckets.size(); }
size_type max_bucket_count() const
{ return __stl_prime_list[__stl_num_primes - 1]; }
size_type elems_in_bucket(size_type bucket) const
{
size_type result = 0;
for (node* cur = buckets[bucket]; cur; cur = cur->next)
result += 1;
return result;
}
pair<iterator, bool> insert_unique(const value_type& obj)
{
resize(num_elements + 1);
return insert_unique_noresize(obj);
}
iterator insert_equal(const value_type& obj)
{
resize(num_elements + 1);
return insert_equal_noresize(obj);
}
pair<iterator, bool> insert_unique_noresize(const value_type& obj);
iterator insert_equal_noresize(const value_type& obj);
void insert_unique(const value_type* f, const value_type* l)
{
size_type n = l - f;
resize(num_elements + n);
for ( ; n > 0; --n)
insert_unique_noresize(*f++);
}
void insert_equal(const value_type* f, const value_type* l)
{
size_type n = l - f;
resize(num_elements + n);
for ( ; n > 0; --n)
insert_equal_noresize(*f++);
}
void insert_unique(const_iterator f, const_iterator l)
{
size_type n = 0;
distance(f, l, n);
resize(num_elements + n);
for ( ; n > 0; --n)
insert_unique_noresize(*f++);
}
void insert_equal(const_iterator f, const_iterator l)
{
size_type n = 0;
distance(f, l, n);
resize(num_elements + n);
for ( ; n > 0; --n)
insert_equal_noresize(*f++);
}
reference find_or_insert(const value_type& obj);
iterator find(const key_type& key)
{
size_type n = bkt_num_key(key);
node* first;
for ( first = buckets[n];
first && !equals(get_key(first->val), key);
first = first->next)
{}
return iterator(first, this);
}
const_iterator find(const key_type& key) const
{
size_type n = bkt_num_key(key);
const node* first;
for ( first = buckets[n];
first && !equals(get_key(first->val), key);
first = first->next)
{}
return const_iterator(first, this);
}
size_type count(const key_type& key) const
{
const size_type n = bkt_num_key(key);
size_type result = 0;
for (const node* cur = buckets[n]; cur; cur = cur->next)
if (equals(get_key(cur->val), key))
++result;
return result;
}
pair<iterator, iterator> equal_range(const key_type& key);
pair<const_iterator, const_iterator> equal_range(const key_type& key) const;
size_type erase(const key_type& key);
void erase(const iterator& it);
void erase(iterator first, iterator last);
void erase(const const_iterator& it);
void erase(const_iterator first, const_iterator last);
void resize(size_type num_elements_hint);
void clear() { super::clear(); __stl_debug_do(invalidate_all()); }
# if defined (__STL_DEBUG)
void invalidate_node(node* it) {
__invalidate_iterator(this,it,iterator());
}
void delete_node(node* n){ invalidate_node(n); super::delete_node(n);}
# endif
private:
size_type next_size(size_type n) const { return __stl_next_prime(n); }
void initialize_buckets(size_type n)
{
const size_type n_buckets = next_size(n);
buckets.reserve(n_buckets);
buckets.insert(buckets.end(), n_buckets, (node*) 0);
num_elements = 0;
}
size_type bkt_num_key(const key_type& key) const{
return bkt_num_key(key, buckets.size());
}
size_type bkt_num(const value_type& obj) const {
return bkt_num_key(get_key(obj));
}
size_type bkt_num_key(const key_type& key, size_t n) const {
return hashfun(key) % n;
}
size_type bkt_num(const value_type& obj, size_t n) const {
return bkt_num_key(get_key(obj), n);
}
void erase_bucket(const size_type n, node* first, node* last);
void erase_bucket(const size_type n, node* last);
};
// fbp: these defines are for outline methods definitions.
// needed to definitions to be portable. Should not be used in method bodies.
# if defined ( __STL_NESTED_TYPE_PARAM_BUG )
# define __difference_type__ ptrdiff_t
# define __size_type__ size_t
# define __value_type__ Value
# define __key_type__ Key
# define __node__ __hashtable_node<Value>
# define __reference__ Value&
# else
# define __difference_type__ hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::difference_type
# define __size_type__ hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::size_type
# define __value_type__ hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::value_type
# define __key_type__ hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::key_type
# define __node__ hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::node
# define __reference__ hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::reference
# endif
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
INLINE_LOOP __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++()
{
const node* old = cur;
__stl_verbose_assert(old!=0,__STL_MSG_INVALID_ADVANCE);
cur = cur->next;
if (!cur) {
size_type bucket = ht->bkt_num(old->val);
while (!cur && ++bucket < ht->buckets.size())
cur = ht->buckets[bucket];
}
return *this;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++(int)
{
iterator tmp = *this;
++*this;
return tmp;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
INLINE_LOOP __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&
__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++()
{
const node* old = cur;
__stl_verbose_assert(old!=0,__STL_MSG_INVALID_ADVANCE);
cur = cur->next;
if (!cur) {
size_type bucket = ht->bkt_num(old->val);
while (!cur && ++bucket < ht->buckets.size())
cur = ht->buckets[bucket];
}
return *this;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++(int)
{
const_iterator tmp = *this;
++*this;
return tmp;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline forward_iterator_tag
iterator_category(const __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
return forward_iterator_tag();
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline Value*
value_type(const __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
return (Value*) 0;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline ptrdiff_t*
distance_type(const __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
return (ptrdiff_t*) 0;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline forward_iterator_tag
iterator_category(const __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
return forward_iterator_tag();
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline Value*
value_type(const __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
return (Value*) 0;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline ptrdiff_t*
distance_type(const __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
return (ptrdiff_t*) 0;
}
template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
bool operator==(const hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& ht1,
const hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& ht2)
{
typedef typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::node node;
if (ht1.buckets.size() != ht2.buckets.size())
return false;
for (int n = 0; n < ht1.buckets.size(); ++n) {
node* cur1 = ht1.buckets[n];
node* cur2 = ht2.buckets[n];
for ( ; cur1 && cur2 && cur1->val == cur2->val;
cur1 = cur1->next, cur2 = cur2->next)
{}
if (cur1 || cur2)
return false;
}
return true;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
pair<__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>, bool>
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::insert_unique_noresize(const __value_type__& obj)
{
const size_type n = bkt_num(obj);
node* first = buckets[n];
for (node* cur = first; cur; cur = cur->next)
if (equals(get_key(cur->val), get_key(obj)))
return pair<iterator, bool>(iterator(cur, this), false);
node* tmp = new_node(obj);
tmp->next = first;
buckets[n] = tmp;
++num_elements;
return pair<iterator, bool>(iterator(tmp, this), true);
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::insert_equal_noresize(const __value_type__& obj)
{
const size_type n = bkt_num(obj);
node* first = buckets[n];
for (node* cur = first; cur; cur = cur->next)
if (equals(get_key(cur->val), get_key(obj))) {
node* tmp = new_node(obj);
tmp->next = cur->next;
cur->next = tmp;
++num_elements;
return iterator(tmp, this);
}
node* tmp = new_node(obj);
tmp->next = first;
buckets[n] = tmp;
++num_elements;
return iterator(tmp, this);
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
__reference__
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::find_or_insert(const __value_type__& obj)
{
resize(num_elements + 1);
size_type n = bkt_num(obj);
node* first = buckets[n];
for (node* cur = first; cur; cur = cur->next)
if (equals(get_key(cur->val), get_key(obj)))
return cur->val;
node* tmp = new_node(obj);
tmp->next = first;
buckets[n] = tmp;
++num_elements;
return tmp->val;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
pair<__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>,
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> >
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::equal_range(const __key_type__& key)
{
typedef pair<iterator, iterator> pii;
const size_type n = bkt_num_key(key);
for (node* first = buckets[n]; first; first = first->next) {
if (equals(get_key(first->val), key)) {
for (node* cur = first->next; cur; cur = cur->next)
if (!equals(get_key(cur->val), key))
return pii(iterator(first, this), iterator(cur, this));
for (size_type m = n + 1; m < buckets.size(); ++m)
if (buckets[m])
return pii(iterator(first, this),
iterator(buckets[m], this));
return pii(iterator(first, this), end());
}
}
return pii(end(), end());
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
pair<__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>,
__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> >
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::equal_range(const __key_type__& key) const
{
typedef pair<const_iterator, const_iterator> pii;
const size_type n = bkt_num_key(key);
for (const node* first = buckets[n] ; first; first = first->next) {
if (equals(get_key(first->val), key)) {
for (const node* cur = first->next; cur; cur = cur->next)
if (!equals(get_key(cur->val), key))
return pii(const_iterator(first, this),
const_iterator(cur, this));
for (size_type m = n + 1; m < buckets.size(); ++m)
if (buckets[m])
return pii(const_iterator(first, this),
const_iterator(buckets[m], this));
return pii(const_iterator(first, this), end());
}
}
return pii(end(), end());
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
__size_type__
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(const __key_type__& key)
{
const size_type n = bkt_num_key(key);
node* first = buckets[n];
size_type erased = 0;
if (first) {
node* cur = first;
node* next = cur->next;
while (next) {
if (equals(get_key(next->val), key)) {
cur->next = next->next;
delete_node(next);
next = cur->next;
++erased;
}
else {
cur = next;
next = cur->next;
}
}
if (equals(get_key(first->val), key)) {
buckets[n] = first->next;
delete_node(first);
++erased;
}
}
num_elements -= erased;
return erased;
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(const __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& it)
{
__stl_verbose_assert(it.owner()==this, __STL_MSG_NOT_OWNER);
node* const p = it.cur;
if (p) {
const size_type n = bkt_num(p->val);
node* cur = buckets[n];
if (cur == p) {
buckets[n] = cur->next;
delete_node(cur);
--num_elements;
}
else {
node* next = cur->next;
while (next) {
if (next == p) {
cur->next = next->next;
delete_node(next);
--num_elements;
break;
}
else {
cur = next;
next = cur->next;
}
}
}
}
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> first,
__hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> last)
{
size_type f_bucket = first.cur ? bkt_num(first.cur->val) : buckets.size();
size_type l_bucket = last.cur ? bkt_num(last.cur->val) : buckets.size();
__stl_debug_check(__check_if_owner(this,first)&&__check_if_owner(this,last));
__stl_verbose_assert(f_bucket <= l_bucket, __STL_MSG_INVALID_RANGE);
if (first.cur == last.cur)
return;
else if (f_bucket == l_bucket)
erase_bucket(f_bucket, first.cur, last.cur);
else {
erase_bucket(f_bucket, first.cur, 0);
for (size_type n = f_bucket + 1; n < l_bucket; ++n)
erase_bucket(n, 0);
if (l_bucket != buckets.size())
erase_bucket(l_bucket, last.cur);
}
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> first,
__hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> last)
{
erase(iterator(__CONST_CAST(node*,first.cur),
__CONST_CAST(self*,first.ht)),
iterator(__CONST_CAST(node*,last.cur),
__CONST_CAST(self*,last.ht)));
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
inline void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(const __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& it)
{
erase(iterator(__CONST_CAST(node*,it.cur),
__CONST_CAST(self*,it.ht)));
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::resize(__size_type__ num_elements_hint)
{
const size_type old_n = buckets.size();
if (num_elements_hint > old_n) {
const size_type n = next_size(num_elements_hint);
if (n > old_n) {
__vector__<node*, Alloc> tmp(n, (node*) 0);
for (size_type bucket = 0; bucket < old_n; ++bucket) {
node* first = buckets[bucket];
while (first) {
size_type new_bucket = bkt_num(first->val, n);
buckets[bucket] = first->next;
first->next = tmp[new_bucket];
tmp[new_bucket] = first;
first = buckets[bucket];
}
}
buckets.clear();
buckets.swap(tmp);
}
}
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase_bucket(const size_t n,
__hashtable_node<Value>* first,
__hashtable_node<Value>* last)
{
node* cur = buckets[n];
if (cur == first)
erase_bucket(n, last);
else {
node* next;
for (next = cur->next; next != first; cur = next, next = cur->next)
;
while (next) {
cur->next = next->next;
delete_node(next);
next = cur->next;
--num_elements;
}
}
}
template <class Value, class Key, class HashFcn,
class ExtractKey, class EqualKey, class Alloc>
void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase_bucket(const size_t n,
__hashtable_node<Value>* last)
{
node* cur = buckets[n];
while (cur != last) {
node* next = cur->next;
delete_node(cur);
cur = next;
buckets[n] = cur;
--num_elements;
}
}
template <class Value, class Alloc>
void __hashtable_base<Value, Alloc>::clear()
{
for (size_type i = 0; i < buckets.size(); ++i) {
node* cur = buckets[i];
while (cur != 0) {
node* next = cur->next;
delete_node(cur);
cur = next;
}
buckets[i] = 0;
}
num_elements = 0;
}
template <class Value, class Alloc>
void __hashtable_base<Value, Alloc>::copy_from(const __hashtable_base<Value, Alloc>& ht)
{
buckets.reserve(ht.buckets.size());
buckets.insert(buckets.end(), ht.buckets.size(), (node*) 0);
for (size_type i = 0; i < ht.buckets.size(); ++i) {
const node* cur = ht.buckets[i];
if (cur) {
node* copy = new_node(cur->val);
buckets[i] = copy;
++num_elements;
for (node* next = cur->next; next; cur = next, next = cur->next) {
copy->next = new_node(next->val);
++num_elements;
copy = copy->next;
}
}
}
}
# undef __difference_type__
# undef __size_type__
# undef __value_type__
# undef __key_type__
# undef __node__
__END_STL_NAMESPACE
#endif /* SGI_STL_HASHTABLE_H */